Some Uses of Zero Exponents

Naming Classes

Kant's Subcategories of Quality:
Affirmative $X^{0}=1$
Negative $\mathrm{X}^{-\infty}=0$
Infinite $X^{+\infty}=\infty$
${ }_{B}^{A} X_{C}^{0}=$ the class " C " with a member " A " and a subclass " B ".
(Singular script in lower case; plural in upper case.)

$$
\begin{gathered}
X^{0}=\text { universal class } \\
{ }^{0} X^{0}=\text { nul class, memberless } \\
X_{-C}^{0}=\text { complement of class } C
\end{gathered}
$$

RELATING CLASSES

In Folk words:
I Males or Females
II Male Children
III If boys, then males
IV Humans are people

In Formulas
$X_{A+B}^{0}=0$
$X_{A B}^{0} \neq 0, A, B$
$X_{A B}^{0}=X_{B}^{0}$
$X_{A B}^{0}=X_{A}^{0} X_{B}^{0}$

Operating

Logical SUM $={ }^{0} X_{-c}^{0}--$ disjoint case
Logical PRODUCT $={ }^{0} X_{-c}^{0}$-- overlap proper case
Logical INCLUSION $={ }^{0} X_{-c}^{0} \quad$-- part-whole case
Logical EQUALITY $={ }^{0} X_{-c}^{0} \quad--$ mutual inclusion case
Logical DENIAL $={ }^{0} X_{-c}^{0} \quad$-- i.e. no members
Identity elements are:
Digit zero for \pm; as $\mathrm{x}+0=\mathrm{x}$
Exponent zero for x , as $\div \mathrm{xy}^{0}=\mathrm{x}$

Classifying = Logical sums

Qualifying = logical products

Specifying Assumptions
 In a physical formula

$\mathbf{F}=\mathbf{g} \mathbf{M}_{1} \mathbf{C}_{1}^{0} \mathbf{C}_{2}^{0} \mathbf{M}_{2} / \mathrm{L}^{2}$

Deriving a Law

Specifying Conditions
 in a chemical reaction

