Some Uses of Zero Exponents

Naming Classes

Kant's Subcategories of Quality: Affirmative $X^0 = 1$

Negative $X^{-\infty} = 0$

Infinite $X^{+\infty} = \infty$

 $_{\rm B}^{\rm A}$ $_{\rm C}^{\rm O}$ = the class "C" with a member "A" and a subclass "B". (Singular script in lower case; plural in upper case.)

 X^0 = universal class $^0X^0$ = nul class, memberless X^0_{-C} = complement of class C

RELATING CLASSES

In Folk words:

I Males or Females

II Male Children

III If boys, then males

IV Humans are people

In Formulas

$$X_{A+B}^{0} = 0$$

$$X_{AB}^{0} \neq 0,A,B$$

$$X_{AB}^{0} = X_{B}^{0}$$

$$X_{A+B}^{0} = 0$$

$$X_{AB}^{0} \neq 0,A,B$$

$$X_{AB}^{0} = X_{B}^{0}$$

$$X_{AB}^{0} = X_{A}^{0}$$

Operating

Logical SUM = ${}^{0}X_{-C}^{0}$ -- disjoint case Logical PRODUCT = ${}^{0}X_{-C}^{0}$ -- overlap proper case Logical INCLUSION = ${}^{0}X_{-C}^{0}$ -- part-whole case Logical EQUALITY = ${}^{0}X_{-C}^{0}$ -- mutual inclusion case Logical DENIAL = ${}^{0}X_{-C}^{0}$ -- i.e. no members

> Identity elements are: Digit zero for \pm ; as x + 0 = xExponent zero for x, as $\pm xy^0 = x$

Classifying = Logical sums

People named "A"

2 set plurals subclassified into

People named a sum of

2 set plurals subclassified into

PA = Po

8:a...

Qualifying = logical products

Specifying Assumptions

In a physical formula

Deriving a Law

Specifying Conditions in a chemical reaction

